
by Ronald Legarski
C(n,r) = n! / (r!(n-r)!)
CR(n,r) = (n + r - 1)! / (r!(n - 1)!)
C(n1+n2+...+nk, n1, n2, ..., nk) = (n1+n2+...+nk)! / (n1!n2!...nk!)
Permutation: P(n,r) = n! / (n-r)!
Combination: C(n,r) = n! / (r!(n-r)!)
(x + y)^n = C(n,0)x^n + C(n,1)x^(n-1)y + C(n,2)x^(n-2)y^2 + ... + C(n,n-1)xy^(n-1) + C(n,n)y^n
C(10,3) = 10! / (3!(10-3)!) = 10! / (3!7!) = 120
C(52,5) = 52! / (5!(52-5)!) = 52! / (5!47!) = 2,598,960
C(49,6) = 49! / (6!(49-6)!) = 13,983,816
C(20,5) = 20! / (5!(20-5)!) = 15,504
5 × 3 = 15 different outfits
Appetizers: C(6,2) = 15
Main Course: 4 choices
Dessert: 5 choices
Total combinations: 15 × 4 × 5 = 300
C(100,50) = 100,891,344,545,564,193,334,812,497,256
C(n,k) = C(n-1,k-1) + C(n-1,k)